O.3. PAKA, KLLADKA, TLAKK, TREECí sília

otáčivé účinky
Příklady těles otáčivých kolem osy \qquad
\qquad

Otáčivé účinky síly závisí na:
-
-

PÁKA - je to tyč otáčivá kolem vodorovné osy.

V rovnovážné poloze je
..

Zavedli jsme novou fyzikální veličinu zvanou moment síly, ozn. M.
Ti, zda je páka v rovnováze můžeme ověřit výpočtem podle vzorce: \qquad

Užití páky: \qquad

Pevná kladka - je kotouč otáčivý kolem vodorovné osy, na svém obvodu má žlábek pro lano.

kladka je v rovnovážné poloze pokud platí:

Pro síly platí:

deformační účinky

Položíme-li závaží na tenkou desku, která je na koncích podložena, po určité době se prohne. Tedy závaží působilo na desku silou, která měla deformační účinky. Tuto sílu nazýváme tlaková síla a působí kolmo na plochu tělesa. Podíl velikosti tlakové síly F a obsahu plochy S , na kterou tato síla působí kolmo, se nazývá tlak. Jednotkou tlaku je Pascal a značíme ji Pa.

$$
p=\frac{F}{S}
$$

Třecí síla
Je to síla, která působí proti směru pohybu a která má na těleso brzdné účinky. Velikost třecí síly závisí na a \qquad Je prímo úměrná tlakové síle,
kterou působí těleso kolmo na podložku.
Třecí síla je užitečná - \qquad a taky je neužitečná - \qquad

